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Abstract—We introduce a new type of derivative for cryp-
tocurrencies: the path-dependent everlasting option. This can
be understood as a generalization of the so-called everlasting
option to a wider class of instruments for which their payoff
function depends on the trajectory followed by the price of the
underlying asset. This is the case, e.g., for the Asian or barrier
options. In addition, we present a trading protocol for these
novel derivatives and present a state-of-the-art Monte Carlo
methodology for the efficient pricing of these instruments.

1. Introduction

An option is a financial derivative (i.e., an instrument
whose value depends on the value of another asset) that
gives its buyer the opportunity –but not the obligation–
to buy or sell its underlying asset on (or before) a future
time (the so-called expiration date) and at a fixed “strike”
price, provided certain conditions on the contract are sat-
isfied. By far, the most commonly traded type of options
are “European” or “American” options [1], whose price
and payoff structure depend solely on the strike price and
the underlying price at expiration [1]. These two kinds
of options are typically referred to as “vanilla options”
and, in the context of Traditional Finance (TradFi), are
typically traded over large exchanges, such as the NYSE.
Options whose pricing structure and contract terms are more
complicated than vanilla options are typically referred to
as “exotic options”. In TradFi, exotic options are created
by financial engineers to come up with advanced trading
strategies. Typically the majority of exotic options are traded
Over The Counter (OTC). This, in turn, can lend itself to a
wide array of opaque or even malicious behavior, which can
be avoided in the context of Decentralised Finance (DeFi)
and Decentralised Exchanges (DEX) using blockchains and
smart contracts as a transparent ledger for both the pricing
and exchange of these instruments. To the best of our
knowledge, the market for options trading in the DeFi sphere
is in its early stages; with a handful of exchanges based
on the following protocols [2], [3], [4]. A type of financial
derivative that will be of particular interest for this work
is what we will call non-expiring contracts; i.e., contract
without a fixed expiration date. This is the case of, e.g.,
perpetual futures [5], [6] and, more recently, everlasting
options [3], [7], the latter of which can be understood as
a geometrically weighted basket of infinitely-many vanilla

options with increasing expiration date. Inspired by this, we
introduce a new type of exotic derivative, called the ”path-
dependent everlasting option”, which can be thought of as
an extension of the ideas presented in [7]. In short, the main
contributions of this work are:

1) Introduction of a novel class of exotic options:
the path-dependent everlasting option. This can be
thought of as an everlasting option whose pay-
off depends on the path followed by the price of
the underlying asset. Typical examples of (non-
everlasting) path-dependent options are the so-
called Asian or Barrier options.

2) An efficient protocol for the exchange of such
instruments. This protocol builds upon the ideas
presented in [3] and [8].

3) We propose state-of-the-art numerical methods,
namely Quasi-Monte Carlo [9] and Multi-level
Monte Carlo [10], for the efficient and accurate
pricing of these contracts. Furthermore, we present
an error analysis and a computational complex-
ity estimator for their pricing. Given that these
instruments are quite time and accuracy-sensitive
in nature, it is important to have efficient pricing
mechanisms, as well as theoretical bounds on their
computational cost.

The rest of this paper is organized as follows. In section
1.1 we will introduce the mathematical setting and notation
that will be used throughout the rest of the manuscript.
We aim at presenting this section with a great deal of
generality so that the methodologies presented later in the
manuscript can be easily extendable to pricing models be-
yond the usual constant drift, constant variance Geometric
Brownian Motion. In Section 2 we recall the concept of
a vanilla everlasting option and introduce their new, path-
dependent counterpart. The protocol for the exchange of
these derivatives is presented in Section 2.1. We present, an-
alyze and discuss a fast pricing strategy in Section 3. There,
we illustrate the computational gains associated with our
pricing methodologies. Lastly, we present some conclusions
and finalizing remarks in Section 4.
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1.1. Setup and notation

We introduce some of the notation that will be used
throughout the work. Let R+ := [0,∞), and denote by
(R+,B, {Ft}t≥0,P) a filtered probability space.1 Given a
drift μ : R2

+ → R and a volatility σ : R2
+ → R+, we model

the price of an asset S : R+ → R+ as the solution to the
following Stochastic Differential Equation (SDE) :

dS(t)

S(t)
= μ(S, t)dt+ σ(S, t)dW (t), (1)

where W (t) is a standard Wiener process. Notice that here
we are considering a more general version of the Geomet-
ric Brownian Motion (GBM) model typically used in the
Black-Scholes formulation that accounts for non-constant
drift and non-constant volatility. Being able to have this
additional level of generality in the financial model is of
great importance for highly-volatile markets, such as the
crypto-currency one. Let us consider an option with strike
price K ∈ R+ and payoff function ψ : R+ × R+ → R+

. Under the assumption that there exists a risk-free asset
providing returns with a (risk-free) rate r : R+ → R+,
it follows from the arbitrage-free pricing model [11] that
the price V (t, S,K, ψ, T ) of an option with strike price K,
payoff function ψ, and expiration date T is given by

V (t, S,K, ψ, T ) = E

[
e−

∫ T
t

r(u)duψ(S(t),K)|Ft

]
, (2)

where the expectation is taken with respect to the risk-
neutral measure. With a slight abuse of notation we will
sometimes write V (t) to denote V (t, S,K, ψ, T ) whenever
there is no source of confusion regarding the other parame-
ters in V . We remark that in the particular case where both
σ and μ are constant, and the payoff function is sufficiently
simple (such as that of a European type option, which
has payoff ψcall(S,K) = max{S − K, 0} for a call or
ψput(S,K) = max{K−S, 0} for a put), the contract at hand
can be priced by solving the well-known Black-Scholes-
Merton [12] partial differential equation, which yields a
computationally simple or even analytical expression for
the price of V . However, it is well-known (see, e.g., [11])
that once one starts considering more complicated options
contracts, such as those involving potentially large number
of underlying assets, or options contracts whose payoff func-
tion is path-dependent, the numerical solution to the BSM
partial differential equation can quickly become computa-
tionally inefficient. Such is the case, e.g., of the arithmetic
Asian option (c.f. Equation (3)), or the barrier option (c.f.
Equation (4))

ψ1(S(t),K) = max

{
1

t

∫ t

0

S(τ)−Kdτ, 0

}
, (3)

ψ2(S(t),K) = max {S(t)−K, 0}1{
max

0≤t∗≤t
S(t∗)≤B

}, (4)

1. Loosely speaking, B represents the set of all possible values the that a
pricing process can take in R+, and Ft represents the history of the price
process up-until some time t

where 1{·} is the indicator function and B ∈ R+ is some
barrier term. We remark that many other path-dependent
options exist, see, e.g., [11]. In this work, we will focus on
the construction and pricing of a class of so-called perpetual
options (see, e.g., [3], [5], a particular class of options
contracts that do not expire and whose payoff cannot be
computed using the BSM model. Thus, one typically needs
to estimate the solution to (2) using Monte Carlo (MC)
methods as outlined below:

1) Discretize the underlying dynamic S(t) ≈ Sh(t)
using some appropriate numerical method (e.g.,
Euler-Maruyama, Milstein, etc).

2) Generate N realizations of the underlying (dis-
cretized) price dynamic Sh(t) and compute a Monte
Carlo estimator of V , as

V (t, S) ≈ 1

N

N∑
n=1

V (t, Sn
h ) =: V̂h,

with the understanding that V̂h → V as N →∞ and h→ 0.

2. Path-dependent everlasting options

We now aim at extending the ideas of everlasting op-
tions, developed in [3] for vanilla payoffs under a GBM.
We begin by recalling the idea of an everlasting option for
an arbitrary payoff function and then proceed to construct a
novel trading protocol for these instruments.

As the name suggests, everlasting options are a type
of options contract without an expiration date. Since these
instruments do not have an expiration date, they can allow
traders to have long-term exposure or hedging without the
efforts, expenses, and potential risks associated with repeat-
edly re-opening their position every so often [3]. Similar
to perpetual futures, everlasting options rely upon the idea
of a recurrent funding fee that the buyers (longs) must
pay to sellers (shorts) to keep their positions open. Denote
by Ve(S,K, ψ) the price of the everlasting option with
underlying value S(t), strike price of K, and payoff function
ψ, and denote a funding period of T . The mechanism of an
everlasting option with a potentially exotic payoff works as
follows:

1) At time t = 0, agent A opens a position with
payoff ψ for a price of Ve. This could be a short
or long position and we will assume that there is
a counter-party for this contract (c.f. Section 2.1).
This payoff can be as simple as a vanilla call or as
complex as a basket of several exotic options with
path-dependent payoffs.

2) At the close of every funding period (i.e., at time
t = kT , k ∈ N), agent A pays (if A is a
buyer) or receives (if A is a seller) a funding fee
F : R

2
+ → R+ to maintain their position. In

particular, F corresponds to the time-value of the
option, i.e.,

F (S,K) := Ve(S,K, ψ)− ψ(S(t);K).
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Notice then that by simply considering a more general
formulation of the product in [7], one can obtain a more
interesting derivative. This could be useful in a wide variety
of cases, ranging from pure speculation, to carefully crafted
risk-hedging involving involving path-dependent strategies
which involve a constant re-roll of a position.

Naturally, a crucial part of these products is the com-
putation of Ve. Before diving into the mathematical and
computational aspects of Ve, we first describe how a trading
protocol for these instruments can be created.

2.1. Trading protocol

Inspired by the so-called Proactive Market-Making ideas
(PMM) of the DODO framework [8] and Deri Protocol [3],
as well as the Virtual Automated Market Making (VMM) of
Perp, we now present a simple type of PMM for derivative
trading, particularly well-suited for the type of instruments
considered in this work. We remark that, given that this idea
can be utilized as the backbone of other derivative-trading
protocols, we aim at discussing it with a high degree of
generality.

We begin with the construction of a pricing curve. We
say that the market is at parity whenever the number of
long positions b equals the number of short positions s. Let
w1, w2 ∈ [0, 1] such that w1 + w2 = 1. Given a contract
theoretically priced at Ve, we define the pricing curve P :
R

3
+ → R+:

P (Ve, b, s) = Ve

[
w1

(
b

s

)m

+ w2(1 + a(b− s))+
]
+ ε

(5)

with m, a, ε ∈ R+. Here, ε � 1 is included so that P
does not go to zero. Notice that P can be thought of as an
extension to the trading function on the Deri protocol [3], by
considering a weighted average between their pricing curve
[3] and the term

(
b
s

)m
, which, intuitively, penalises buyer-

seller disparity according to m; indeed noting that by taking
w1 = 0 and w2 = 1 one recovers the same pricing curve
as in [3]. This is illustrated in Figures 1 and 2. We remark
that a similar idea of utilising weighted averages between
pricing curves has been proposed in the case of automated
market makers by Curve finance (former StableSwap) [13].

Thus, at any moment in time (since, naturally, b and s are
time-dependent) the price of the underlying option is given
by P . Once this pricing curve has been constructed, users
can interact with a given protocol by buying (resp. selling)
potentially exotic and path-dependent option contracts from
(resp. to) the liquidity providers with an adjusted mark price
given by P (Ve, b, s). To that end, consider a classic two-pool
AMM (e.g., Uniswap) with a numéraire x and a quotable
asset y (e.g., USDC and ETH) and trading function Φ (c.f.
[14] for a precise definition). The protocol then works as
follows:

1) A buyer is interested in buying a contract (on the
quotable asset) currently begin traded at a price
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Figure 1. Contour plot of P (1, b, s) for m = a = 1 and w1 = w2 = 0.5
for the price formula in (5). Notice that, for the parameters chosen, having
more buyers than sellers, produces a large reduction in price.
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Figure 2. Plot of P vs b
s

for different values of m in (5) . Notices that
larger values of m produce larger reductions in price whenever b < s.

p1 = Key, Ke > 0.
2) They buy the contract for a price given a trading

function Φ. This money goes to the liquidity pool
and the buyer is issued a token representing the
value of the contract. Furthermore, this induces a
price for the quotable asset, which then gets fed to
P . The user also pays a small transaction fee which
goes directly into the pool.

3) The buyer pays fees to maintain their position at
every time t = kT , k ∈ N. To do this in a fully
decentralized and trust-less manner, the user needs
to deposit some collateral and can get liquidated by
the protocol or external liquidators. This collateral
is not part of the liquidity pool, but part of it can
go towards it if there is a liquidation.

4) The user can then sell their contract at a later time
for a price p2 determined by both equation 5 and
the price of the quoted asset.

5) Liquidity providers receive the transaction and a
portion of the trading fees.
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Notice that Equation (5) needs to be computed every
time there is a transaction. In the case where the protocol
is highly active, where potentially hundreds of transactions
are carried out per second, Ve would need to be efficiently
computed. The following two sections are devoted to the
construction and numerical computation of Ve.

2.2. Pricing Ve

Currently, to the best of our knowledge, everlasting
options have only been thoroughly analysed (let alone im-
plemented) in the case where the payoff function ψ of Ve is
that of a vanilla European put or call. In a general setting,
given a payment period T > 0, with a continuously accrued
funding (i.e., the funding frequency ω → ∞), it is shown
in [7] via the so-called no-arbitrage argument, that the price
Ve is given by

Ve(S,K;ψ) =
1

T

∫ ∞

0

V (t, S,K, ψ)e−t/Tdt. (6)

As a remark, notice that (6) has a nice interpretation as
the expected value of a random variable V (τ, ·, ·, ·) with
τ ∼ Exp

(
T−1

)
, i.e., one could alternatively write

Ve(S,K;ψ) = Eτ∼Exp(T−1) [V (τ, S,K, ψ)] . (7)

In the particular case of vanilla payoffs with r = 0, i.e.,
where ψvanilla(S(t);K) = ψput = max{0,K − S(t)} or
ψvanilla = ψcall = max{0, S(t) −K}, there exists a closed-
form formula for Equation (6) given by

Ve(S,K, ψvanilla) = ψvanilla(S(t),K) + Val,

with Val =

⎧⎨⎩K
u

(
S
K

)−u−1
2 if S(t) ≥ K,

K
u

(
S
K

)u+1
2 otherwise ,

where u =
√

1 + 8
σ2T .

For more general payoff functions, however, the term
(6) cannot be computed explicitly, but rather needs to be
numerically approximated. This incurs three levels of ap-
proximation, namely:

• Approximation of the outer integral. This should
be done using a numerical quadrature rule, such
as a Gauss-Lebesgue quadrature, where one uses a

predetermined set of quadrature points {wi, ti}Nquad

i=1
to approximate integrals of the form

∫∞
0
g(x)e−xdx

as
∫∞
0
g(x)e−xdx ≈ ∑Nquad

n=1 wig(xi) (provided the
integral exists), i,e.,

T−1

∫ ∞

0

V (t)e−tT−1

dt ≈
Nquad∑
i=1

wiV (tiT
−1) =: Ve,Q,

where for notational simplicity we have omitted the
irrelevant arguments of V

• For each ti, there is an approximation for the simu-
lation of the underlying dynamic by discretizing the
time interval [0, ti] on ti/h intervals of size h ≥ 0.

As an example, in the case of constant volatility and
constant r, this induces an approximation of the form

V (ti, S,K, ψ) ≈
∫
R

Dh

ψh(Sh(ti),K)e−tiC
−1ti

(2π)dh det(C)
dti

=: Vh(ti, S,K, ψ)

with ti := (0, th, . . . , ti), and Ci,j = min{i, j} the
covariance matrix of the Wiener process (c.f. [15]).

• Monte Carlo approximation of the inner (finite-
dimensional) integral Vh, which is done by averaging
over Nmc independently and identically distributed
realizations of ψh.

Thus, given a discretisation parameter h, a set of Nquad

quadrature points {wi, ti}Nquad

i=1 and a sufficiently large num-
ber of Monte Carlo samples NMC, on has the approximation

V̂e,h,Q(S,K, ψ) :=

Nquad∑
i=1

wi

(
NMC∑
n=1

V
(n)
h (ti, S,K, ψ)

N

)
(8)

≈ Ve(S,K, ψ).

Notice that as a consequence of (7), one could alternatively
approximate both integrals using Monte Carlo methods,
however, we will chose to focus on this approach in future
work. Notice, furthermore, that a similar procedure can be
used to price the Greeks associated with such an option (c.f.
[11]). We present an error bound and complexity result for
the approximation in (8).

Theorem 1 (Error and Complexity MC). Suppose that, for
any fixed S,K, ψ, the mapping t 	→ V (t, ·, ·, ·) is sufficiently
smooth so that the integral converges with rateO(N−ρ

quad), for
some r > 1. Suppose, furthermore, that V̂h is being numeri-
cally approximated using Nquad points for the quadrature, a
discretisation parameter h for the SDE in Equation (1) with
accuracyO(hα), and Nmc Monte Carlo samples. Then, there
exists a positive constant cs > 0 such that

MSE(V̂e,h,Q) := E

[(
V̂e,h,Q − Ve

)2
]

≤ cs

⎛⎝Nquad∑
i=1

wi

(
V[V (ti)]

N
+ h2α

)
+N−2ρ

quad

⎞⎠ .

Furthermore, given a tolerance tol > 0, the computational
cost required so that MSE(V̂h) ≤ tol2 is upper bounded by

Cost
(

MSE(V̂e,h,Q) < tol2
)
≤ ckO(tol−2−1/α−1/ρ)

for some positive constant ck.

Proof. We begin with the bound on the approximation error.
With a slight abuse of notation, we will drop the dependence
on S,K, ψ of V . Let’s introduce the notation:

Ve,h,Q(t) :=

Nquad∑
i=1

wiVe,h(t).
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From the definition of MSE, we have that, by adding ±Ve,Q,
we obtain

MSE(V̂h) = E

[(
V̂e,h,Q − Ve

)2
]

≤ 2E

[(
V̂e,h,Q − Ve,Q

)2
]
+ 2E

[
(Ve,Q − Ve)

2
]

Further adding ±Ve,h,Q gives

≤ 4E

[(
V̂e,h,Q − Ve,h,Q

)2
]

︸ ︷︷ ︸
(i)

+4E
[
(Ve,h,Q − Ve,Q)

2
]

︸ ︷︷ ︸
(ii)

+ 4E
[
(Ve,Q − Ve)

2
]

︸ ︷︷ ︸
(iii)

(9)

Notice that the last three terms in inequality (9) are, up
to a constant 4, the error contributions of (i) the variance
of the Monte Carlo estimator, (ii) the discretization bias
squared and (iii) the integration error. From this and Jensen’s
inequality we have that

(i) = 4E
[
(Ve,h,Q − Ve,Q)

2
]
≤ cs

Nquad∑
i=1

wi
V[V (ti)]

Nmc

,

(ii) = 4E
[
(Ve,h,Q − Ve,Q)

2
]
≤ cs

Nquad∑
i=1

wih
2α,

(iii) ≤ csN
−2ρ
quad .

for some constant cs. Adding the previous upper bounds
proves the first result. To obtain the second result we make
each error contribution smaller than tol2. This in turn implies

that h � tol1/α, h−2 � Nmc and tol−1/ρ � Nquad. Thus,
the computational cost needed to obtain an MSE bounded

by tol2 grows as O(tol−2−1/α−1/ρ), as desired.

Notice that, even for moderate values of α and r, the
cost-tolerance complexity of our estimator grows rather fast.
In a practical setting, this would severely limit the efficiency
of our proposed AMM. We now present a way of alleviating
this issue.

3. Efficient pricing

We present a Multi-level Quasi-Monte Carlo (MLQMC)
approach for the fast and accurate computation of Ve. We
remark that MLQMC methods have been used several times
in the literature for the pricing of (non-everlasting) exotic
options, as discussed in, e.g., [10]. Given the novelty of ever-
lasting options, however, to the best of our knowledge, these
methods have not yet been used to price these instruments.
In the remainder of this section, we present a brief overview
of these methodologies and propose an MLQMC algorithm
for the fast computation of Ve. As the name suggests,
MLQMC methods have two main components; Quasi-Monte
Carlo methods, which improve the convergence of crude
Monte Carlo methods by considering sequences of quasi-

random numbers, and Multi-level Monte Carlo methods,
which improve upon crude Monte Carlo methods relying
upon a discretized model by considering a hierarchy of
discretizations.

3.1. Quasi-Monte Carlo (QMC)

We recall the main ideas behind Quasi Monte Carlo
(QMC) methods in an abstract setting. Consider the integral
I of a function f : Rd → R over the d-dimensional unit
sduare given by

I =

∫
[0,1]d

f(x1, . . . , xd) dx1 . . . dxd.

A Crude Monte Carlo estimator ÎCMC that uses N
independent and identically distributed replicas of X :=
(x1, . . . , xd), achieves an error

|I − ICMC| ≤ c1−α/2

√
V[f(X)]√
N

with asymptotic confidence 1−α. The idea of Quasi Monte
Carlo (QMC) sampling is to consider, instead, a purely
deterministic sample {X(1), . . . , X(N)} to improve the rate
1/
√
N , while keeping the simple structure of the sample

average estimator ÎQMC = 1
N

∑N
i=1 f(X

(i)) with equal
weights 1/N . It relies on the observation that a random
uniform sample does not seem to cover “uniformly” the hy-
percube and hopefully there exist better designs that achieve
this goal. To that end, QMC uses a Low Discrepacy Se-
quence (LDS), which, intuitively, cover the unit square on a
more uniform way (c.f. Figure 3). Several multi-dimensional
LDS are known (e.g., Sobol, Halton, Faure sequences, c.f.
[16]) and their study is an active field of research for both
number theorists and financial mathematicians. It is known
(see e.g., [9] for a thorough discussion on this) that using
(deterministic) ”samples” from an LDS, QMC estimators
are of the form:

|I − IQMC| < O
(
(logN)(d−1)

N

)
,

i.e., the error decays as N−1 rather than the slower N−1/2

of standard Monte Carlo. There is a caveat, however, and it
is that this constant on this error is unknown and typically
difficult to estimate. Furthermore, since the points from an
LDS are not random points, one cannot use the Central Limit
Theorem to compute the error of the estimator. An easy
idea to overcome this is to randomize the QMC formula.
Let U ∼ U([0, 1]d). If P = {X(1), . . . , X(N)} is a low
discrepancy point set, so is

PU = {{X(1) + U}, {X(2) + U}, . . . , {X(N) + U}}
where the same shift is applied to all points and again {·}
denotes the fractional part. PU is called a randomly shifted

point set. We could then compute μ̂
(j)
QMC, j = 1, . . . , k, for

few randomly shifted point sets and average the obtained
results. The resulting randomly shifted QMC estimator is
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Figure 3. Left: Sequence of 50 uniform random numbers on the unit square.
Right: LDS on the unit square.

then μ̂QMC = 1
k

∑k
j=1 μ̂

(j)
QMC. Since U (j) ∼ U([0, 1]d), so

is {X(i) + U (j)} for any i = 1, . . . , N . It follows that
μ̂QMC is an unbiased estimator of μ = Eψ. Moreover,

since μ̂
(j)
QMC are independent, the variance of the estima-

tor is Vμ̂QMC =
σ2

QMC

k with σ2
QMC = E(μ̂

(j)
QMC − μ)2 =

O
(

(logN)2(d−1)

N2

)
hence, very small, in general, and can

be estimated by the standard sample variance estimator

σ̂2
QMC = 1

k−1

∑k
j=1(μ̂

(j)
QMC − μ̂QMC)

2. Lastly, notice that

Algorithm 1 Randomly shifted QMC.

1: Generate U (1), . . . , U (k) iid∼ U([0, 1]d)
2: for j = 1, . . . , k do
3: compute μ̂

(j)
QMC = 1

N

∑N
i=1 f({X(i) + U (j)})

4: end for
5: Compute μ̂QMC = 1

k

∑k
j=1 μ̂

(j)
QMC

6: Compute σ̂2
QMC = 1

k−1

∑k
j=1(μ̂

(j)
QMC − μ̂QMC)

2

7: Output μ̂QMC and

Iα =

[
μ̂QMC − c1−α/2

σ̂QMC√
k
, μ̂QMC + c1−α/2

σ̂QMC√
k

]
.

the QMC method is designed of rintegrals with respect to
the Lebesgue measure in the unit square. In our case, since
we are typically interested in integrating against multivariate
Gaussian measures, one then needs to transforms the points
in the unit square into the real line with the inverse normal
cumulative distribution function (c.f. [9], [16] for a detailed
account of how to implement these methods).

3.2. Multi-level Monte Carlo (MLMC)

Multi-level Monte Carlo methods are a set of computa-
tional techniques that exploit the relationship between the
number of samples, discretization accuracy, and computa-
tional complexity of an MC estimator in such a way that
the overall computational cost associated with obtaining an
MC estimator with a given accuracy is much lower than its
single level (i.e., “plain” MC ) counterpart. These methods
have been successfully implemented in the fields of option
pricing [10], [17], uncertainty quantification for different
applications in science and engineering [18], and Bayesian
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Figure 4. Discretisation of the SDE in (1) at different levels of accuracy.

inference [19], [20]. In the interest of brevity, we briefly
present the main idea behind these methods and refer the
interested reader to [10] and the references therein for an
in-depth discussion about them. The idea behind MLMC is
fairly simple; instead of considering simulations at a fixed
discretisation parameter h = hL, one considers a hierarchy
of discretisation levels h� = 2−�h0, 	 = 0, 1, . . . , L approx-
imating V by Vh�

with increasing accuracy (and hence cost)
in 	. One can then estimate E[V ] ≈ E[VhL

] ≈ V MLMC
L with

V MLMC
L :=

1

N0

N0∑
i=1

V
(i,0)
h0

+

L∑
�=1

1

N�

N�∑
i=1

[
V

(i,�)
h�

− V (i,�)
h�−1

]
,

where V
(i,�)
h�

and V
(i,�)
h�−1

denote correlated realizations of V
discretised with a time-step h� and h�−1 using the same
random input (c.f. Figure 4). This correlation is important
for reducing the cost of computing the MLMC estimator.
The cost of the estimator is controlled by two parameters;
namely, the level-wise sample sizes N� and the number
of levels L. It is shown in [10] that by cleverly choosing

N� as a function of (i) V

[
V

(i,�)
h�

− V (i,�)
h�−1

]
(ii) the cost of

the simulation at level 	 and the desired error tolerance
tol, MLMC provides an estimator of E[V ] with the same
tolerance than its single-level counterpart, albeit at a much
cheaper cost. We recall such a result next.

Theorem 2 (MLMC cost complexity [10]). Suppose that
there exists positive constants α, β, γ, c1, c2, c3 such that:

|E[Vh�
− V ]| ≤ c12

−α�,

|V[Vh�
− V ]| ≤ c22

−β�,

Cost(Vh�
) ≤ c32

−γ .

Then, there exists a number of samples N� = N�(tol) such
that

MSE(V MLMC
L ) < tol2. (10)

Furthermore, the computational cost of a MLMC estimator
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satisfying (10) is bounded by

Cost
(
MSE(V MLMC

L ) < tol2
) ≤ c4

⎧⎪⎨⎪⎩
tol−2 β > γ

tol−2(log(tol))2 β = γ

tol−2−(γ−β)/α β < γ.

3.3. Multi-level Quasi-Monte Carlo (MLQMC)

Our proposed methodology for the efficient computation
of Ve is outlined below. The “inner loop” component of such
a procedure is based upon the work of [10].

Algorithm 2 Pricing everlasting option

1: procedure MLQMC-PRICING(tol, Lmin)
2: Set Nquad = �tol−2/r.
3: for i = 1, . . . , Nquad do

Set L = 0.
4: Estimate [VhL

(ti) − V (ti)] using 32 random
offsets and NL = 1.

5: while
∑L

�=0[VhL
(ti)− V (ti)] >

tol2

3 do
6: Double N� on the level with the largest

[Vh�
(ti)− V (ti)]

2�N�

.
7: # if not at minimum level or bias too large,

add level
8: if L < Lmin or |EhL−hL−1

|2 < tol2/3 then
9: set L = L+ 1 and go to line 4.

10:

One can extend Theorem 2 to a multi-level estimator of
the price of Ve. We present such a result next.

Theorem 3 (MLMC cost complexity for Ve). Suppose that
the mapping t 	→ V (t, ·, ·, ·) is sufficiently smooth. Then,
under the same assumptions as Theorems 1 and 2, one
has that the computational cost of estimating Ve using the
Algorithm 2 so that its MSE is bounded by tol2 has a cost
Cost

(
MSE(V MLMC

e,L ) < tol2
)
< K with

K ≤ c4

⎧⎪⎨⎪⎩
tol−2−1/ρ β > γ

tol−2−1/ρ(log(tol))2 β = γ

tol−2−(γ−β)/α−1/ρ β < γ.

Proof. This theorem is a consequence of theorems 1 and
2. Indeed, proceeding as in the proof of Theorem 1, it just
suffices to observe that the terms (i) and (ii) in 9 are the
Multi-level Monte Carlo contributions to the MSE, which
can be bound using Equation (10).

In order to showcase the advantages of our proposed
method, we present a simple “sanity check” example where
we compare the time-to-solution for the pricing of an ever-
lasting Asian option using (a) Crude Monte Carlo (CMC)
and (b) our Multi-level Quasi Monte Carlo (MLQMC) ap-
proach. To that end, consider an arithmetic Asian option
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Figure 5. cost-tolerance complexity. As we can see, the proposed method-
ology is clearly more efficient than plain Monte Carlo.

time (s) Option price Error bound

Standard Method 284.73 6.246 0.024
Our method 2.43 6.263 0.023

TABLE 1. RESULTS.

with K = 120, S0 = 100, r = 0.1, σ = 0.3 and a payoff
given by

ψh(S(ti),K) = max

{
1

N

N∑
n=0

S(tnh)−K, 0
}
, h = ti/N.

Notice that, in this case, the accuracy of the payoff ψh

depends on the discretisation parameter h, with the under-
standing that ψh → (3) as h → 0. We construct Sh using
a Milstein discretisation scheme [15], and estimate values
for α, β, γ given by α = 0.99, β = 1.3 and γ = 0.95.
This in agreement with what one might theoretically expect
for this type of scheme and the type of payoff (c.f. [15],
[10]. We price this option using both methods to a tolerance
of tol = 5 × 10−3, i.e., we aim to price the option with
either method so that the mean square error is less than
tol2. We estimated ρ > 5 (which suggests that V is a
sufficiently smooth function of t), and as such we consider
Nquad = 10. For the MLQMC algorithm, we chose L = 7
with h� = 2−�−1, 	 = 0, 1, . . . , 7. We present our results
in Table 1. As we can see, we can gain an improvement of
over 100 times for the pricing of each option. We remark
that further computational gains can be obtained by comput-
ing each MLQMC estimator in an embarrassingly parallel
fashion. A complexity plot based on the estimated values of
α, β, γ is presented in Figure 5.

4. Finalising remarks

In our current work, we have presented a new type of
derivative applicable to the DeFi space. In addition, we have
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presented a new type of trading mechanism for these deriva-
tives. We remark that our presented trading protocol can, at
least in theory, be extended beyond the case of everlasting
options (i.e., one could use it to trade, e.g., vanilla or other
exotic derivatives). Furthermore, we presented a theoretical
analysis of the computational complexity of their pricing.
Lastly, we have advocated for the use of advanced Monte
Carlo techniques for the pricing of these contracts.

Our simple numerical results illustrate a rather large
computational advantage of our proposed methodologies
over standard pricing techniques.

There are a handful of possible research directions one
could look into. From a modeling perspective, one could,
e.g., incorporate even more general models for the pricing
process, such as a general Lévy process. One could also
look into proposing and pricing other types of financial
derivatives that could be of interest in the DeFi sphere, such
as options with a change of numéraire. From a protocol per-
spective, a much-needed piece of missing literature is robust
modeling and quantification of the uncertainty associated
with automated trading protocols. We are currently working
towards this goal, and in future work, we aim to expand and
further investigate, via numerical simulations, the behavior
of our proposed protocol.
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