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Abstract—One of the most exciting recent developments in
Decentralized Finance (DeFi) has been the development of
decentralized exchanges, called Automated Market Mak-
ers (AMMs). In this work, we study the most prominent
special class of them, the Constant Function Market
Makers (CFMMs). We introduce a generalized formula
for CFMMs, called λCFMMs, which encapsulates the idea
of combining the advantages of constant sum and constant
mean CFMMs by blending their functions where λ is
the degree of mixture. Our experiments demonstrate the
behaviour of this generalized formula for various token
pools with different properties and price differences, and
evaluate its performance regarding slippage and imper-
manent loss for different degrees of mixture during a
trading period. We further show that given the nature of
the pool and an optimization objective, different levels of
mixture lead to optimal non-trivial functions, which as we
show, outperform some of the most popular AMMs such
as Uniswap. The novelty of λCFMMs is both the mixing
method that helps us target more efficient AMM functions
and also the fact that motivates the idea of dynamic AMM
functions that given certain features can self-adjust their
parameters in order to produce mutual profits for both
the traders and the liquidity providers.

1. Introduction

Market makers in traditional finance (TradFi) such
as the ones for stocks, offer liquidity for enabling
investors to sell or purchase assets that are close to a
publicly listed price. In TradFi the mechanism of order
books is the one determining the prices of different
assets via a trusted third party who keep records of all
the bids and asks.
However, this approach changed with the introduction
of decentralized finance (DeFi). Blockchains have now
a new purpose of offering financial services without the
need of a middleman. This need introduced the idea of
Decentralized Exchanges (DEXes), which allow users

to trade in a fully noncustodial manner. The most recent
blockchains are heavily dependent on the concept of
smart contracts (SCs). SCs are program objects that live
on the blockchain and they are able to communicate
with one another, via message-calls within the same
execution context and support atomicity, i.e.the concept
that a transaction either success or fails entirely. In such
a context the order book mechanism will be challenged
to properly operate mainly due to the expensive nature
of computation and storage that they demand. A reason-
able approach in order to avoid these costly on-chain
manipulations was to implement trades off-chain [2] [3].
Although the gas paid to the miners in such a case
decreases there are still certain issues that these suffer
from, mainly regarding front-running opportunities [4]
that lurk behind.
Lately, all of the above motivated a new DEX, called
curve-based Automated Market Makers (AMMs). The
study of AMMs initially began from the field of al-
gorithmic game theory and the study of scoring rules
within the statistics literature [6]. The first to propose a
pricing mechanism based on these scoring rules was
Robin Hanson [7], who introduced the Logarithmic
Market Scoring Rule (LMSR). In contrast to AMMs,
these early automated market makers proved to be com-
putationally expensive and cumbersome for the users.
Recent AMM exchanges such as Bancor [5], Uniswap
[8] [11], StableSwap/Curve [9] have become undeniably
popular, something that is also proven by the fact that
the trading volume on all these DEXes exceeded $60
billion in March 2022.
The idea of AMMs is based on liquidity pools where
third parties pool their assets into reserves and then
based on a pre-defined mathematical formula (curve),
the asset price is been determined. In these DEXs,
liquidity providers deposit amounts (of equal value)
of multiple types of assets to the designated liquid-
ity pools, and traders exchange against the pools of
tokens instead of relying on order matching. Curve-
based AMMs provide a continuous supply of liquidity
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compared to the order book model and depending on
a pre-defined mathematical function (curve), they can
potentially allow for a wide range of exchange prices.

1.1. Contributions

In short, the main contributions of our work are:

• The introduction of a generalized AMM formula
that can interpolate between Constant Sum and
Constant Mean functions while containing both
as special cases.

• The analysis of the theoretical properties of this
new family of functions and the proof of various
properties regarding the pricing and the trading
functions of it.

• The extensive experimentation on real-world
trading periods accompanied with novel visual
representations regarding the tracking of slip-
page and impermanent loss behaviour for dif-
ferent mixture coefficients.

• Insights that indicate the superiority of our for-
mula in targeting more efficient “intermediate”
functions compared to the standard markets by
adjusting the mixture level.

2. Background

2.1. Constant Function Market Makers

Constant Function Market makers (CFMMs) consti-
tute the most popular class of AMMs and the first to be
applied in real world decentralized applications. Their
main purpose is to provide decentralized exchanges of
digital assets and are based on a function that estab-
lishes a pre-defined set of prices based on the available
quantities of two or more assets. Their main difference
with traditional market makers and order book based
exchanges is the fact that the trading happens against a
pool of assets rather than a specified third party. One
can think CFMMs as a “game” between two players
and a group of supervisors. The two players are the
Traders, who exchange assets on the pool, and the
Liquidity Providers (LPs), who are willing to provide
assets in the pool and accept trades in exchange of a
fee. The supervisors of the game are the Arbitrageurs.
As in traditional finance arbitrageurs exploit possible
differences in the price of a reference market and the
pool price of an asset to make profit for free. We call
them supervisors as they maintain the two prices of the
assets (pool and reference price) in a relative balance.
For example, if the pool price is less than the reference
market price, arbitrageurs will buy the asset on the pool
and sell it on an order book-based exchange for a profit.

The term constant refers to the fact that the given
mathematical relationship of the pool’s remains constant
if its constant is also unchanged. A reasonable property
for these curves is to be convex and monotonically
decreasing because this will ensure that the price of
a token is monotonically decreasing as a function of its
reserves in the pool, as should be expected of a typical
supply curve.

2.1.1. Price of assets & Pool value. A plot of an asset
versus its price, is called bonding curve and shows the
variation of the asset’s price in the liquidity pool. Given
a CFMM curve and a pool state of reserves, we can
derive the price of a token X (in terms of a token Y )
at this state as follows:

PX = −dy

dx

We can see that the price of an asset is actually the
slope at the given state of the pool on the curve.
In this framework, we can also define the value of a
given liquidity pool (measured in terms of Y) as follows:

Vp(x, y) = PX · x+ y

2.1.2. Constant Product Market Makers. A constant
product market maker, first implemented by Uniswap,
in the 2D case (2-asset pool) satisfies the equation:

x× y = k

Where x > 0 and y > 0 are reserves of assets X and
Y respectively and k is a constant. Trading an amount
of Δx for an amount Δy the reserves must change in a
way that their product will remain equal to the constant
k. This means that every trade in CPMMs must satisfy
the following equation:

(x+ γΔx)× (y −Δy) = k, ∀Δx,Δy > 0

where γ is the transaction fee. In practice, because
Uniswap charges a 0.3% trading fee that is added to
reserves, each trade actually increases k [12].
After each transaction the reserves are updated in the
following way:

(xnew, ynew, k) = (x+Δx, y−Δy, (x+Δx)×(y−Δy))

2.1.3. Constant Sum Market Makers. The simplest
CFMM is the constant sum market maker (CSMM).
For reserves x, y for X and Y assets a CSMM holds
the sum of the reserves constant

x+ y = k

Contrary to CPMMs where the slope of the curve is
different at every point, and thus the price varies every
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Figure 1. The constant sum (CSMM) and constant product (CPMM)
functions for k = 10. CPMM forms a hyperbola, whereas CSMM a
straight line when plotting the reserves of two assets.

time the reserves change, CSMMs x+ y = k keep the
pricing function equal to a constant number:

PX = −dy

dx
= 1

Therefore, CSMMs are usually an attractive CFMM to
the AMM players due to the price stability they offer,
which is useful when trading tokens with stable relative
prices (e.g. stablecoins) as this minimizes slippage.
However, there are multiple concerns around CSMMs
when an external market price is variable. In this way,
arbitrageurs will be able to constantly take advantage
of the price gap between the two markets and because
the constant price in the CSMM cannot, by definition,
adapt to situations like this, they may drain the CSMM
of one of its tokens.
Figure 1 illustrates the curves of both the constant sum
and constant product functions.

2.1.4. Constant Mean Market Makers. A constant
mean market maker is a generalization of a constant
product market maker, allowing for more than two
assets of equal weights. First introduced in Balancer
[10], constant mean markets satisfy the following nD
equation in the absence of fees:

n∏
i=1

xwi
i = k

where xi are the reserves of asset x1, x2, ..., xn, w ∈ R
n

are the weights associated with each asset and k ∈ R+

the constant product. The constant mean markets ensure
that the weighted geometric mean of the reserves, xi

for i = 1, ..., n, stays constant. In this case the weights
should all satisfy w ≥ 0 and

∑n
i=1 wi = 1. Similarly to

the constant product markets when trading an amount
Δp of asset Xp for some amount Δq of a different asset

Xq , where q �= p the following equation should always
be satisfied:( n∏

i=1
i�=p,q

xwi
i

)
(xp + γpΔp)

wp(xq −Δq)
wq = k

where (1 − γp) is the percentage fee associated with
trading asset Xp. Note here that we can retrieve the
constant product market formula as a special case when
we set n = 2 and w1 = w2 = 1

2 and γ1 = γ2 with

k =
√
k.

Finally, for the bileteral trading price of an asset Xi in
terms of an asset Xj the following holds:

PXi =
wi

wj

xj

xi

2.1.5. Hybrid CFMMs. StableSwap/Curve [9] pro-
posed a CFMM curve that is a blend of Constant Sum
and Constant Product to provide continuous liquidity,
price stability and a built-in pool balancing mechanism.
This function acts as a constant sum when the portfolio
is balanced and shifts towards a constant product as
the portfolio becomes more imbalanced. In effect, the
function looks like a “zoomed-in hyperbola”

Ann
n∑

i=1

xi +D = ADnn +
Dn+1

nn
∏n

i=1 xi

Finally, the authors in [14] proposed the Constant El-
lipse Curve AMM with the general form of:

(x− α)2 + (y − β)2 + bxy = k

in which α and β are constants. One can choose be-
tween the concave and the convex curve in the first
quadrant.
These hybrid formulas are the ones that motivated our
work in the sense that exhibit a larger class of auto-
mated market maker mechanisms that can include and
combine multiple other CFMMs as special cases.

2.1.6. Slippage & Impermanent loss. Slippage as a
function expresses the difference between the expected
and the actual trade execution price. In the case of
AMMs slippage is the loss incurred by dissimilarity of
the spot price of an asset in the pool (i.e. the price
that the trader sees before the trading) and the effective
price obtained after the completion of the trade. On
the other hand, Impermanent loss occurs when liquidity
providers pull out assets from the pool during a large
price swing. In this case they will suffer a loss of total
asset value, compared to simply holding the assets. As
we saw before, when a trade happens the price of an
asset may change as we move from p0 in the (x0, y0)
state to pn to the new state (xn, yn). Thus, the overall
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value of the pool may change and potentially decrease.
This exact decrease its what is called impermanent loss
and is given by:

IL =
Vpn

(xn, yn)− Vpn
(x0, y0)

Vpn
(x0, y0)

3. λ - Constant Function Market Makers

In this section we introduce a new generalized
family of constant function markets, the λ - constant
function markets (λCFMMs) and we also prove that
one can derive some of the traditional constant function
market makers from it as special cases. The primary
goal for the rest of the paper is to motivate this family
of functions as it forms a novel method for blending the
benefits of different CFMMs. The proposed function is
a concave function that was initially inspired by the
constant power sum formula which was first proposed
in [13]. Suppose we have a pool of n assets, then the
nD λCFMM defined as follows:

fλ(x) =
n∑

i=1

wλ
i x

1−λ
i

where xi are the reserves of asset Xi for i = 1, 2..., n,
w ∈ R and wi ∈ {[0, 1] :

∑n
i=1 = 1} are the weights

associated with each asset, λ ∈ [0, 1) is the parameter
of the function and k ∈ R

+ is the constant.

3.1. Pricing on λCFMMs

As we saw in Section 2.1.1 the ratio − dy
dx represents

the price at which the trader sells the asset. Thus we
can prove the following Theorem for λCFMMs:

Theorem 1. The bileteral pricing function of an asset
X (in terms of an asset Y ) in λCFMMs is given by the
following equation:

PX(λ) =

(
wxy

wyx

)λ

Proof. We want to prove that we can retrieve the
λCFMMs formula from the following equation:

−dy

dx
=

(
wxy

wyx

)λ

Indeed:

⇒ −dy

dx
=

(wxy)
λ

(wyx)λ
⇒ −wλ

yy
−λdy = wλ

xx
−λdx

⇒ −wλ
y

∫
y−λdy = wλ

x

∫
x−λdx

⇒ −wλ
y

y1−λ

1− λ
+ c0 = wλ

x

x1−λ

1− λ
+ c1

If we let (c0 − c1)(1− λ) = k then we get:

wλ
xx

1−λ + wλ
yy

1−λ = k

which indeed is the λCFMMs formula.

3.2. Trades on λCFMMs

It is always important to define the equation that
each trade needs to satisfy in order for it to be valid.
For the nD case, trading Ap amount of an asset Xp for
some amount Aq of a distinct asset Xq , where q �= p,
should always satisfy the following equation:

wλ
p (xp + γpAp)

(1−λ) + wλ
q (xq −Aq)

(1−λ)+

+

n∑
i=1
i�=p,q

wλ
i x

(1−λ)
i = k

where (1 − γp) is the percentage fee associated with
trading asset Xp. The corresponding reserves, xp and
xq are updated as as follows:

xp −→ xp +Ap, xq −→ xq −Aq

By taking the second derivative of the fλ(·) function
we can see that is a concave function, and satisfies the
basic properties we mentioned at the start of the Section,
regarding the trades and the liquidity stability of the
pool, to be considered a valid AMM function.

3.3. Traditional CFMMs as special cases

The λCFMMs can be seen as a generalized family
of functions which contains certain commonly used
AMM functions as special cases. Specifically, we can
retrieve the constant sum, mean and product given
certain values of λ.

Theorem 2. The function fλ can be reduced to the
constant sum and constant mean formulas, as follows:

fλ(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
i=1

xi, λ = 0

n∏
i=1

xwi
i , λ −→ 1

Furthermore, for the pricing formula of an asset X:

PX(λ) =

⎧⎪⎨
⎪⎩

1, λ = 0

wxy

wyx
, λ −→ 1
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Figure 2. Liquidity curves for asset swaps for multiple values of λ
for a fixed constant k. For λ = 0.99 the curve represents the constant
mean (weighted product) function and for λ = 0 the constant sum
function. The intermediate curves increase their curvature as λ → 1.

In the Appendix we provide the proof for the λ→ 1
case as the rest should be straightforward. Finally, note
that for n = 2 we can also retrieve the 2D constant sum
formula and if we additionally let wx = wy = 1

2 , and

k =
√
k we retrieve the 2D constant product formula.

In Figure 2 we illustrate the curves of λCFMM for
different values of λ.

3.4. λ as the Mixture coefficient

It is clear that the family of λCFMMs is a
parametrized blending of constant sum and constant
mean functions. Thus, naturally we can think of
λ as the mixture coefficient between these two.
Consequently, λ = 0 or λ → 1 indicates no mixture,
whereas λ = 0.5 indicates the maximum mixture of
these functions (i.e. you have 50% of each). Thus,
we define low mixture areas (LM ) as the ones that
are close to the edges of the [0, 1) range and high
mixture areas (HM ) as the ones that are concentrated
around 0.5. We also, further divide the LM areas
into left low mixture area (LLM ), as the one that
is close to zero (i.e. CSMM) and right low mixture
area (RLM ), as the one that is close to 1 (i.e. CMMM).

4. Experiments & Results

In this section we motivate the use of λCFMMs
as we believe that such a generalised and potentially
dynamic family of functions could be able to create
mutual profits for both the traders and the liquidity
providers by adjusting its formula based on the optimal

parameter that minimizes Slippage (S) and Imperma-
nent Loss (IL). We conduct a number of experiments
to compare the performance of λCFMMs for different
mixture coefficient values as these provide different
behaviors and blendings in between the two extremes
of CSMM and CMMM formulas. In the first part we
present the behaviour of λCFMMs by performing a
grid-search for different values of λ in the [0, 1) range
over a trading period and in the second part we motivate
the selection of optimal mixture coefficients given the
same objectives. In this direction, we present a straight
comparison with Uniswap v2, which can be retrieved
from the λCFMMs formula for λ→ 1 and wi =

1
2 .

4.1. Dataset

Our experiments examine four different pools/pairs
of tokens, two of which where stablecoin pairs (USDC-
USDT, DAI-USDT) and the other two with differences
in price (USDC-WETH, USDT-WETH). We split our
analysis both on the nature of the pool (stable/ non-
stable) but also on the presence or not of transaction
fees1. Our dataset was based on the Uniswap v2 trading
trends. Specifically, for every pair of tokens we pulled
Uniswap v2 data, by continuously fetching swaps for
the specific pair from the chain every 1 minute. For
each transaction, we got the balance of each token in
the pool and the trading amounts on each block. Figure
4 provides a snapshot of the data we had and highlights
the columns we used.

Figure 3. We used the initial pool reserves (Rx, Ry) from the first
recorded block as the initial state of our pools and use the trading
demands of one of two coins (Δx) and update the reserves based on
the λCFMMs formula for different values of λ.

4.2. Simulations

For each trade based on the input/output volume
we compute the new state of the pool’s reserves and
also the values of slippage and impermanent loss based
on the closed forms we introduced in Section 2.1.6.
Finally, we track their variation on a sequence of trading
blocks of the chain. The different values of λ lead to
different traces on the plot indicating the different effect
of the mixture coefficient. In Figures 5, 6 and 7 we

1. In the experiments that fees were included, we define the trans-
action fee to be φ = 0.25%.
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Figure 4. Slippage variation (y-axis) for different values of λ between
different blocks (x-axis) throughout a trading period. Top: The non-
stablecoin case of USDC-WETH pool. Bottom: The stablecoin case
of USDC-USDT. The black frames are zoomed versions for a subset
of blocks from a certain period.

can see the simulation for both metrics alongside some
zoomed versions that will help the reader understand the
underlying behaviour of the different functions given
the nature of the pool.

4.3. Results & Remarks

We divide our analysis into three different mixture
areas as follows:

HM = [0.35, 0.65], LLM = [0, 0.35], RLM = [0.65, 1)

4.3.1. The effect of λ on slippage variation. For the
Slippage plots we can make the following remarks given
the stability of the pool:
For stable pools, we observe that when the value of
λ increases then the slippage follows. This is perfectly
illustrated on the zoomed frame of Figure 5 (bottom).
Thus, LLM areas have the lowest slippage2 and RLM
areas the higher.
The maximum mixture coefficient returns a slippage

2. We should keep in mind that λ = 0 represents the CSMM which
always has zero slippage since the price of the assets is always stable.

Figure 5. A zoomed version for a subset of blocks of Slippage
variation (y-axis) for different values of λ between different blocks
(x-axis) throughout a trading period in the presence of transaction
fees (φ = 0.25%). Top: The non-stablecoin case of USDT-WETH
pool. Bottom: The stablecoin case of DAI-USDT. The black frame
is a zoomed version for a subset of blocks from the same period.

Figure 6. Cumulative Impermanent Loss variation (y-axis) for dif-
ferent values of λ between a subset of blocks (x-axis) throughout a
trading period. Top: The non-stablecoin case of USDC-WETH pool.
Bottom: The stablecoin case of USDC-USDT.

value in the middle. However, the addition of transac-
tion fees breaks this ordering. Specifically, as Figure 6
(bottom) indicates the CSMM function (λ = 0), which
was previously the best performer is now a straight line
on the 0.0025 value (φ = 0.25%) and in many cases
other values result in less slippage. This shows that:
In the realistic setting where fees are added there are
mixture coefficients that blend CSMM and CMMM in
a way that provides less slippage than the original
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Figure 7. Average Slippage (top) and Impermanent Loss (bottom) for
1000 values of λ in the [0, 1) range. The green line represents the
USDC-WETH pool and the purple the USDC-USDT one. Transaction
fee: φ = 0.25%. The data is normalized in the [0, 1] range.

formulas in certain trading scenarios.
For the non-stable pools, again λ = 0 gives the min-
imum slippage for the same reasons, but as mentioned
in Section 2 this can be dangerous since the pool is not
constituted of stablecoins and arbitrageurs can easily
drain it. Both in the presence of fees (Figure 5 - top)
and not (Figure 6 - top) contrary to the stable case there
is no ordering of the functions, meaning that different
values of λ provide the optimal slippage at different
blocks. Furthermore, we notice that: In the majority of
the simulations, mixture coefficients that lie on the LM
areas seem to provide better results compared to the
ones in the HM one. The maximum mixture again stays
in the middle and presents the less slippage fluctuation
compared to the others.

4.3.2. The effect of λ on impermanent loss variation.
For the Impermanent Loss things are simpler as the
results are not affected by the presence of fees.
For stable pools, in Figure 7 (bottom), we observe the
same ordering as the one in slippage: λ ↑ then IL ↑.
For non-stable pools,in Figure 7 (top), we notice that
in the RLM areas IL seems to have its best values
whereas in the LLM areas the worst ones.

4.3.3. Optimal mixture coefficients. Now, in order to
motivate the selection of better mixture coefficients we
present the results regarding the average of the metrics
for the different values of λ. Through an extensive grid
search of 1000 λ-values in the [0, 1) range in Figure

8 we plot the average slippage (top) and impermanent
loss (bottom) of the trades for each lambda on the grid.
As expected, for stable pools the monotonically in-
creasing behaviour of both for S and IL, illustrated in
Figure 8, proves that λ = 0 (CSMM) is indeed the best
choice for these pools even though we found certain
trades that this would be sub-optimal in the presence of
fees (Figure 6).
However, for non-stable pools although previously the
plots indicated that low mixture could result in better
slippage values, the numerical results show that:
Values of λ that lie on the HM area return the minimum
average slippage.
One can clearly see this in Figure 8 (top). This occurs
due to the fact that even though λ in LM areas returns
seemingly good results for the majority of trades, in the
ones that they are sub-optimal their respective slippage
is extremely big compared to the ones in the HM
area. We can now understand the benefit of the less-
fluctuating behaviour of λ values in the HM area.
Indeed, if we compute the standard deviation of the
three areas we can confirm this claim:

σHM = 0.00005, σLLM = 0.003, σRLM = 0.001

For Impermanent Loss, by looking at Figure 8 (bottom),
the remarks of visual and numerical results match com-
pletely as we notice that maximum IL can be found
in the LLM area and gets better as λ approaches the
RLM area.
Finally, in the table below we analytically compute the
optimal value of λ (λ∗) and the respective slippage (s∗)
and demonstrate the superiority of λCFMMs compared
to Uniswap in all the different cases. The optimal values
are the ones that return the minimum average slippage
and are computed as follows:

λ∗ = min
λ
S(λ)

where

S(λ) = 1

n− 1

n∑
i=2

Sn(λ) and

Sn(λ) = Sn(xn−1, yn−1,Δ
n
x)

for Δn
x indicating the n-th trade on a given pool.
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Overall, our results suggest that regarding S , optimal
functions for non-stablecoins seems to be the ones with
high mixture coefficient (i.e. the ones that strongly
blend CSMM and CMMM), whereas for stablecoins
CSMM always provides the optimal formula.

5. Conclusions

This work introduces a generalized AMM function
called λCFMM from which popular AMM functions
can be retrieved as special cases. The numerical results
alongside the simulations’ plots, over a a trading period,
indicate the benefits of the proposed formula in target-
ing more efficient mixed functions in terms of slippage
and impermanent loss, compared to the standard mar-
kets. Overall, λCFMMs’ structure offers a novel method
for blending the benefits of constant sum and constant
mean market makers and opens the path for future work,
which will have to do with the designing of dynamic
AMM functions, that given certain features, could be
able to self-adjust their parameters and simultaneously
benefit the traders and the liquidity providers.
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Appendix

As we saw Theorem 2 states the following:

For λ→ 1⇒ wλ
xx

1−λ + wλ
yy

1−λ = xwxywy

Proof. We will show that as λ approaches 1, then
λCFMM approaches the constant mean formula. Here
we are proving it in the case where n = 2 but one can
easily see the derivations for n > 2.
First we rewrite the constant k in terms of the constants
x0 and y0 as follows:

fλ(x, y) = fλ(x0, y0) = k

wλ
xx

1−λ + wλ
yy

1−λ = wλ
xx

1−λ
0 + wλ

yy
1−λ
0

Let wλ
x = α and wλ

y = β

⇒ y =

(
αx1−λ

0 + βy1−λ
0 − αx1−λ

β

) 1
1−λ

⇒ ln y =
1

1− λ
ln

(
αx1−λ

0 + βy1−λ
0 − αx1−λ

β

)

When λ → 1, the right side of the equation is an
undetermined form of 0

0 and also α = wλ
x → α′ = wx

and β = wλ
y → β′ = wy . Thus, by applying L’Hopital’s

rule gives us the following limit:

lim
λ→1

∂
∂λ ln(α′x1−λ

0 + β′y1−λ
0 − α′x1−λ)− ∂

∂λ lnβ′
∂
∂λ (1− λ)

= − lim
λ→1

−α′ lnx0x
1−λ
0 − β′ ln y0y1−λ

0 + α′ lnxx1−λ

α′x1−λ
0 + β′y1−λ

0 − α′x1−λ

= −−α
′ lnx0 − β′ ln y0 + α′ lnx

β′

⇒ α′ lnx+ β′ ln y = α′ lnx0 + β′ ln y0

⇒ lnxα′ + ln yβ
′
= lnxα′

0 + ln yβ
′

0

⇒ eln xα′+ln yβ′
= eln xα′

0 +ln yβ′
0

Using the sum property of the logarithm and by replac-
ing the values of α′ and β′ we finally get:

xwxywy = fλ(x0, y0) = k

which is the constant weighted product formula.
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