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Abstract—In the scientific and commercial worlds, predicting
cryptocurrency prices over time has gotten a lot of interest.
Most related studies use variations of Recurrent Neural Net-
works to forecast the next value of a single coin due to the
temporal nature of the challenge. As a result, determining how
effectively such a model would perform across various tasks
(cryptocurrencies), several future timesteps, and forecasting
horizons will be difficult. This paper proposes a multi-task and
multi-step sequence-to-sequence model that is trained jointly
on 22 cryptocurrencies’ time series. Our findings show the
value of sequence-to-sequence modeling for future predictions,
as well as the significant improvements in accuracy and train-
ing time that can be achieved by using a single multi-task
model rather than numerous distinct models for each task.

1. Introduction

The recent advances in financial technology, cryptog-
raphy, and distributed ledger technology have led to the
establishment of cryptocurrencies [1] as one of the pillars of
Web3 [2], Decentralized Finance (DeFi) [3], decentralized
applications (dApps) [4], and NFTs [5]. These cryptocur-
rencies are digital currencies used in decentralized and
traditional financial systems. Over the last years, they have
gained massive popularity as investment assets and as means
of exchange. One of the great benefits of cryptocurrencies
is that they are secured by cryptography which makes them
non-forgeable [6].

Nowadays, billions worth of transactions are happening
on cryptocurrencies, and as such, there is an increased inter-
est in algorithmic trading and price forecasting. The problem
of accurate cryptocurrency price predictions is challenging
due to high non-Gaussian volatility. Most of the traditional
variables that usually affect stocks have nothing to do with
them. Compared to fiat, the assets of cryptocurrencies are
extremely dynamic and present high volatility and fluctua-
tion. The factors related to the price movement can be blurry,
but they have to do with the blockchain network’s mining
cost, market trends, prices of other currencies, world events,
and social media content. Sovbetov et al. [7] considered
many technical factors that influence the prices and trading
volume of Bitcoin, Ethereum, Dash, Litcoin, and Monero,

concluding that positivity is higher than negativity, and
there exist relations between price changes and attitudes.
Furthermore, Narman et al. [8] described how positive and
negative comments on social media affect the prices of
cryptocurrencies.

Although the extreme fluctuation of cryptocurrency
prices and their high cross-correlation creates fertile ground
for significant profits (and great losses), it also makes it ex-
tremely challenging to develop intelligent low-risk strategies
that will benefit investors. As expected, simple statistical
methods for price forecasting fail to capture the complexity
of the price movements, which are strongly affected by
“whale moves” and external world events. Hence, to im-
prove forecasting abilities, there is a clear motivation to con-
sider, beyond any external information, the development of
more advanced machine learning methods, especially Deep
Learning (DL) algorithms suited to sequential multivariate
multi-output problems.

Accurately forecasting prices and other related time-
series data is also highly relevant to developing inter-
blockchain bridging algorithms [9] where liquidity distri-
butions need to be forecasted to ensure smooth user expe-
riences. In the realm of cross-chain trading, decentralized
exchange (DEX) aggregators [10] [11] need to account
for delays in transfers, originating from having to reach
consensus, can change the underlying state of the networks
including the exchange rates, leading to unfavorable pricing
conditions which can be mitigated through accurate fore-
casting.

Related Work

Many researchers have recently tried to perform fore-
casting on the crypto market using various statistical tech-
niques and machine learning algorithms. A large body of
research is around works using various traditional time
series analysis techniques, such as ARIMA and GARCH,
trying to predict the price of bitcoin as the ones in [12],
[13], [14], and [15].

However, in recent years deep learning methods have
become the dominant approach when it comes to forecasting
the dynamics of financial markets [16], and the same applies
to crypto markets. To this end, the work in this domain is
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mainly focused on the implementation of recurrent neural
networks (RNNs), which are most efficient across standard
approaches when it comes to the price forecasting tasks [17],
[18], [19], [20], [21], [22] and [23]. A big body of research
also focuses on the study of DL models by specifically using
sentiment analysis on social media content [24] [25].

Finally, and closer to our work are the studies in [26]
and [27]. Here, both authors proposed DL-based meth-
ods, which include the implementation of GRU, RNN, and
LSTM models for predicting the prices of different types
of cryptocurrencies in isolation, such as bitcoin, litecoin,
and ether in the first work and Litelcoin and zcash in the
second. By examining their results, we notice that the gated
recurrent unit (GRU) model predicted better than the long
short-term memory (LSTM) ones. However, these papers
consider cryptocurrencies in isolation when predicting their
price, thus failing to borrow statistical strength from the time
series of multiple cryptocurrencies, have limited evaluation
on restricted forecasting step sizes and horizons, limited or
no baseline comparisons, and do not consider sequence-to-
sequence architectures.

Contributions

The primary goal of this paper is to introduce a state-of-
the-art deep learning forecasting approach to the crypto price
forecasting domain and provide a thorough comparison and
analysis across multiple cryptocurrencies and forecasting
horizons. The specific contributions of our work are the
following:

1) A detailed study of fine-grained predictions every
eight hours, compared to the typical one-day
predictions found in prior art, in a multi-step
sequence-to-sequence setting which can easily
generalize further for future predictions.

2) A novel approach through a multi-task setting
that jointly predicts the price of 22 different
cryptocurrencies, which also makes our study one
of the most extensive ones regarding the number
of the examined assets.

3) A comparison of our proposed models against sim-
plistic and traditional baselines, such as naı̈ve last
day predictor, Random Forests, and LSTMs using
evaluation matrices such as MAPE, MSE, and Co-
efficient of Determination (r2).

2. Methodology

2.1. Long Short Term Memory: A Primer

LSTM is a type of RNN that mitigates the vanishing
gradient problem of RNNs [29]. Each LSTM cell has two
main types of states: the cell state c captures information
from the entire sequence until the current timestep, whereas
the hidden state h captures information from the previous

timestep. To calculate these states, the following operations
take place:

ft = σg(Wfxt + Ufht−1 + bf ),

it = σg(Wixt + Uiht−1 + bi),

ot = σg(Woxt + Uoht−1 + bo),

c̃t = σc(Wcxt + Ucht−1 + bc),

where f , i, and o are referred to as ‘forget’, ‘input’, and
‘output’ gates, respectively, whereas σg and σc denote the
sigmoid and hyperbolic tangent function, respectively. The
cell and hidden states are then calculated as:

ct = ft ◦ ct−1 + it ◦ c̃t,
ht = ot ◦ σhct,

where σh is the hyperbolic tangent function and ◦ denotes
the Hadamard product.

In our modelling, we use an LSTM operating on the
past N historical values of a cryptocurrency and the output
hidden state of the last timestep is passed to a second LSTM
layer. The outputs of the second LSTM at each timestep
are followed by a dense layer to make a timestep-level
prediction f∗tk (see Figure 1, with k=[N ,N + 1,N + 2]).
Although the input is processed sequentially, non sequence-
to-sequence LSTMs lack of the ability to model the output
in a sequential manner explicitly.

2.2. Sequence-to-Sequence

Sequence-to-sequence models follow an encoder-
decoder architecture [30]. In such models, the ‘encoder’
models the input via some neural architecture (in our case,
an LSTM), and the hidden and cell states of the last times-
tamp (TN−1 in Figure 1) are used to initialize the respective
states of the decoder. The ‘decoder’ then starts operating in
a sequential manner, where at inference time, the output on
the k-th (future prediction) timestep is used as an input for
the (k+1)-th timestep. During training time, the actual values
of the target for timestep k − 1 are used as an input to the
k timestep (e.g., ftN – and not f∗tN shown in Figure 1 –
are used as an input to the second timestep of the decoder).
< START > in Figure 1 is a placeholder for the input to
the very first timestep of the decoder (in our modeling, we
use xtN−1

).

2.3. Multi-Tasking with Sequence-to-Sequence

An extension of the encoder-decoder architecture de-
scribed above, is that of Multi-Task Learning (MTL) [28].
Loosely speaking, MTL aims at improving the general-
ization performance of a task using other related tasks.
MTL involves training a model to perform more than one
prediction task from a given input. Its implementation could
be based on, e.g., using a single encoder and then feeding
the intermediate representation obtained by this encoder to
several other separate decoders performing different out-
put tasks. This, in turn, makes the encoder influenced by
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Figure 1: LSTM (below) vs sequence-to-sequence (middle)
vs Multi-task sequence-to-sequence (above) models, for a
prediction task of 3 future steps given the past N steps. In
sequence-to-sequence, the states of the encoder are used to
initialise the decoder, while during inference the prediction
for the k-th timestep is used as an input to predict the (k+1)-
th timestep.

both tasks during training. Sequence-to-sequence MTL has
successfully been employed in multiple domains, including
language and vision [33], [34].

In our task, we utilize a multi-task setting, where each
task is defined on a per-cryptocurrency basis. In particular,
instead of using the past values of a single cryptocurrency to
predict its next k values, we feed the past values of multiple
cryptocurrencies, aiming to predict their next k values at
the same time under the sequence-to-sequence model archi-
tecture described above (see Figure 1). The benefits of our
proposed model are two-fold: (a) by modeling the input and
output of multiple currencies at the same time, our model

can capture cross-correlation signals and borrow strength
from such highly related tasks; (b) the model requires less
time for training compared to training C related tasks (C
being the number of cryptocurrencies), since it converges
much faster due to its ability to approximate the generative
function of the time-series easier.

3. Experiments

3.1. Task Definition

Our goal is to predict the price of each cryptocurrency in
the next |f | time intervals based on its value in the previous
|h| time intervals (see section 3.2, Instance Generation for
the exact definitions). We aim at demonstrating the gains in
performance by utilizing (a) a sequence-to-sequence model
and (b) integrating that into a multi-task approach for pre-
dicting the |f | future prices of multiple cryptocurrencies.

3.2. Dataset

We employ a large dataset containing information about
the prices of numerous cryptocurrencies at the minute level.1

In particular, for each cryptocurrency, the data entails times-
tamped information about the high, low, opening and closing
price as well as the volume of trade. In this paper, we focus
on the closing price of the cryptocurrencies, translated into
USD. However, our proposed models are easily extensible
to work with multiple input features.

Preprocessing
We focus on the period between the 1st of January 2020
and the 31st of December 2021 (two years). This period
is characterized by high volatility in the fluctuations of
cryptocurrency prices during the COVID-19 pandemic (see
Figure 2). Aiming at building models that assess the value
of a given cryptocurrency at a fine-grained level, we firstly
divide our input data into hourly intervals and define the
closing price of a cryptocurrency during each interval as
the average price observed within it. Then, we generate
our time series based on 8-hour intervals (i.e., considering
every 8th hourly interval) so that we have three closing
prices for each cryptocurrency on each day. Due to missing
data, we only keep the 22 cryptocurrencies at least 99.5%
complete and linearly interpolate any missing values in the
remaining (max) 0.5% of their time series. Lastly, we scale
the resulting time series [0,1]. In particular, given the time
series {x0, x1, ..., xN} of a particular cryptocurrency, we
transform it into:

x̂t =
xt −min(xt)

max(xt)−min(xt)
, (1)

where min and max correspond to the minimum and max-
imum value of that cryptocurrency over time, respectively.

1. https://www.kaggle.com/datasets/tencars/
392-crypto-currency-pairs-at-minute-resolution
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Instance Generation
Our goal is to predict the future values of any given cryp-
tocurrency in |f | future steps ahead, given its |h| historical
values. We thus conventionally set h = 12 (eight-hour
intervals, based on the past four days) and f = 3 (future
one day). Using a stride of one to create our instances,
formally, given the normalised time-series that results from
eq. 1 {x̂0, x̂1, x̂2, ..., x̂N} for a particular cryptocurrency,
our input:output pairs are defined as:

[x̂0, x̂1, x̂2, ..., x̂11] : [x̂12, x̂13, x̂14]

[x̂1, x̂2, x̂3, ..., x̂12] : [x̂13, x̂14, x̂15]

...

[x̂N−16, x̂N−15, x̂N−14, ..., x̂N−4] : [x̂N−3, x̂N−2, x̂N−1].
(2)

In the following subsection, temporally informed models –
such as those presented in section 2 – can sequentially model
the task, thus exploiting the ordering of the input/output vari-
ables. In particular, sequence-to-sequence models can fully
exploit the relationship in the outputs since the predictions
made for one timestep are used to predict the output value
of the next timestep. We will contrast the performance we
obtain through sequence-to-sequence-based models against
the performance of feature-based approaches, treating the
element of the input/output as independent variables.

Figure 2: Normalised USD price of BTC over our entire
dataset, split into train, validation, and test set.

Train/Validation/Test Split
We use the first 80% of the instances in eq. 2 for training
purposes and the remaining (last) 20% for our test set,
where we only evaluate our models on. We further break
our training set into a purely training and a validation set
(using the last 20% of the training data).

3.3. Models

We contrast the performance of our proposed model
against various practices commonly found in related work,
as well as simplistic, yet highly competitive, baselines from
the real world, namely:

• Last Values Predictor (LV). LV is a crude baseline,
predicting the values of our target’s next k timesteps
to be equal to the last k timesteps seen in the input
space in a one-by-one mapping. Since we model
the task so that we aim at predicting the following
three values of eight-hour intervals, LV assumes that
the prices of any cryptocurrency on the following
day will be identical to the ones seen on the last
day at the time of making the prediction. Although
simplistic, we show that such an approach is highly
competitive against state-of-the-art methods, primar-
ily overlooked in related work. Outperforming such
baselines in practice is essential for assessing any
model’s effectiveness.

• Random Forest (RF). RF [31] is an ensemble
model, constructing multiple decision trees during
training time, the outputs of which is later combined
in order to make the final prediction on a given test
set. We set the number of trees equal to 200 and train
RF to independently predict each cryptocurrency’s
following three values. We note that autoregressive
features can be constructed and incorporated inside
the trees. As opposed to our proposed methodol-
ogy, RF does not naturally consider the temporal
dependence between the input values, thus treating
the points in the time series as independent features.

• Feed Forward Neural Network (FF). We train a
fully connected FF neural network with two inter-
mediate layers (each with 32 units, linear activation)
and an output layer (3 units, one per future timestep
to predict). As in the case of Random Forest, FF
treats the input and output as independent features,
failing to consider their temporal dependence.

• Long Short-Term Memory (LSTM). We employ
a two-layer LSTM. The final output of the first (16-
unit) layer is retrieved as an input to the second (3-
unit) layer, followed by a Dense layer of one unit
(per timestep) for the final prediction, as described
in section 2.1. We experimented with increasing the
number of units and adding more layers, but these
harmed the performance of the validation set.

• Sequence to Sequence (seq2seq/s2s). Our first pro-
posed model is a sequence-to-sequence approach
based on LSTMs, as described in section 2.2. We
use 16 units for the LSTMs in the encoder and
decoder. In the decoder’s final stage, we add a Dense
layer, making one prediction at a time (i.e., one per
timestep).
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• Multi-Task Sequence to Sequence (MTs2s). Fi-
nally, our proposed multi-task sequence-to-sequence
model (see section 2.3) follows the same setting with
s2s, albeit operating on all of the available cryp-
tocurrencies simultaneously – yet, in a sequential
manner across timesteps. Due to the price ranges
across the different cryptocurrencies, we transform
each cryptocurrency’s time series on its first-order
residuals and convert it to the original values after
the prediction step.

All of our DL models have been trained by minimizing
the Mean Squared Error (MSE) loss using Adam [32] as our
optimizer for 1k epochs, with an early stopping criterion
being triggered after 100 epochs without improvement on
the validation loss.

3.4. Evaluation Metrics

We assess and contrast the performance of MTs2s
against our baselines using different evaluation metrics, each
capturing a different aspect of the task. We denote a model’s

predictions on the test set as the mapping x
(c)
i,t �→ f((x

(c)
i,t )).

Here, c indexes the the cryptocurrency under consideration
and i ∈ N, t ∈ [1, 2, 3] indicate the instance and (fu-
ture/prediction) time-step index, respectively. We compare
the predicted values of our model against the real values

given by y
(c)
i,t ∈ R. To do so, we consider several standard

measures of error, namely:

Mean Absolute Percentage Error (MAPE)
MAPE measures the average of the absolute value of the

difference between the predicted data f(x
(c)
i,t ) and the mea-

sured data y
(c)
i,t , written as a percentage of the actual value.

More precisely, provided y
(c)
i,t �= 0, we have that for any

(future/prediction) timestep t:

MAPE
(c)
t =

1

N

N∑
i

∣∣∣∣
f(x

(c)
i,t )− y

(c)
i,t

y
(c)
i,t

∣∣∣∣,

where N stands for the total number of instances in the test
set.

Mean Squared Error (MSE)
MSE assesses model performance on the basis of the errors
made in the predictions, by averaging over the squares of
the errors, i.e., this is the square of the �2-norm and can be
written as:

MSE
(c)
t =

1

N

∑
i

(f(x
(c)
i,t )− y

(c)
i,t )

2.

Coefficient of Determination (r2)
The r2 measures how well a model can predict the different

values of the target – in particular, how better our model’s
predictions are compared to the average (target) predictor:

r2t
(c) = 1−

∑
i(f(x

(c)
i,t )− y

(c)
i,t )

2

∑
i(ŷ

(c) − y
(c)
i,t )

2
,

where ŷ(c) is the average of the actual values seen on the
test set. As opposed to MAPE and MSE, higher r2 values
indicate a better model.

Working on each cryptocurrency independently, all of
our metrics are calculated on each future timestep individ-
ually and are then averaged across the three timesteps we
aim at predicting.

4. Results

Tables 1, 3, and 4 show the results based on the three
metrics for each cryptocurrency (averaged across the three
timesteps) as well as for the ‘average’ cryptocurrency (‘Me-
dian’, at the bottom row of each table). MTs2s dominate
in all metrics, offering a clear-cut relative improvement of
23%, 4%, and 35% in MAPE, r2, and MSE compared to the
LV baseline. The effect of multi-tasking across the different
cryptocurrencies is more clearly highlighted when compar-
ing MTs2s to the single-tasked s2s models. Depending on
the metric used for assessment in 17-19 (out of 22) cases,
the performance increases, often rather rapidly as shown
in Table 2 and Figure 3, with the average relative gain in
performance against the single-tasked s2s being 18%.

LV RF FF LSTM s2s MTs2s
BAT .054 .075 .043 .045 .042 .041
BSV .083 .215 .139 .083 .082 .066
BTC .026 .034 .020 .020 .019 .020
DSH .049 .128 .046 .043 .039 .039
EOS .066 .067 .064 .056 .058 .052
ETC .035 .657 .031 .095 .047 .027
ETH .030 .425 .024 .029 .029 .022
ETP .080 .069 .081 .077 .091 .068
IOT .048 .068 .045 .038 .037 .038
LEO .026 .449 .022 .143 .043 .021
LTC .042 .042 .036 .032 .035 .033
NEO .042 .065 .044 .032 .035 .033
OMG .055 .151 .047 .045 .050 .042
TRX .034 .245 .039 .075 .056 .027
UOS .060 .303 .053 .346 .091 .046
VSY .092 .099 .113 .091 .130 .092
XLM .040 .047 .039 .031 .033 .033
XMR .034 .052 .032 .036 .032 .027
XRP .038 .303 .048 .113 .047 .030
XTZ .067 .106 .053 .057 .052 .052
ZEC .051 .050 .043 .038 .042 .039
ZRX .048 .401 .041 .037 .038 .037
Med. .048 .103 .043 .045 .043 .037

TABLE 1: Average MAPE per cryprocurrency across all
future timesteps, for each model. Best results appear in bold.

As expected, the comparison between sequential vs. non-
sequential models indicates that the former outperforms the
latter in almost all metrics/cryptocurrencies. Nevertheless,
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Crypto Gain (%, MAPE)
TRX 52.4
LEO 50.9
UOS 49.7
ETC 42.6
XRP 35.1
VSY 29.0
ETP 24.8
ETH 21.8

TABLE 2: Most important gains in performance (%) were
obtained by multi-tasking across different cryptocurren-
cies (MTs2s) in comparison with single-task sequence-to-
sequence models (s2s).

Figure 3: Comparison of predictions made by sequence-to-
sequence (s2s) and Multitask sequence-to-sequence (MTs2s)
models against the actual prices (a) for TRX, based on
the third (last) forecasting timestep (corresponding MAPEs:
.088/.035) and (b) for ETH, on the basis of the first fore-
casting timestep (corresponding MAPEs: .022/.014).

LV RF FF LSTM s2s MTs2s
BAT .907 .870 .940 .935 .938 .940
BSV .846 .434 .781 .876 .863 .900
BTC .942 .890 .964 .963 .964 .962
DSH .907 .501 .928 .931 .939 .937
EOS .891 .868 .914 .926 .922 .925
ETC .933 -11.179 .950 .653 .895 .959
ETH .925 -9.654 .947 .928 .930 .952
ETP .843 .893 .884 .883 .868 .892
IOT .799 .681 .847 .866 .872 .872
LEO .900 -15.898 .929 -1.129 .751 .930
LTC .876 .882 .911 .923 .912 .920
NEO .940 .884 .945 .960 .955 .961
OMG .952 .380 .965 .963 .955 .968
TRX .824 -3.572 .791 .498 .641 .883
UOS .965 -0.714 .970 -2.234 .833 .979
VSY .787 .784 .789 .815 .725 .808
XLM .844 .787 .865 .900 .889 .882
XMR .898 .815 .914 .896 .914 .932
XRP .863 -3.517 .816 .144 .813 .907
XTZ .900 .715 .936 .929 .936 .936
ZEC .899 .876 .928 .935 .929 .932
ZRX .827 -5.809 .870 .887 .880 .887
Med. .899 .698 .921 .898 .903 .931

TABLE 3: Average r2 metric per cryptocurrency and across
all future timesteps for each model (LV, RF, FF, LSTM, s2s,
MTs2s). Best, statistically significant results appear in bold
font.

FF still achieves highly competitive performance in median
terms against our more advanced LSTM/s2s models. This
is attributed to the short temporal horizon we set in our
experiments. I.e., the prediction of the next day (three 8-hour
intervals) is an easier task than setting a wider prediction
horizon (e.g., a week). Therefore the sequential predictions
are not fully exploited. We plan to investigate this effect
further in our future work. Finally, LV proves to be a rather
competitive baseline, which is often ignored in related work.
Indeed, on the average cryptocurrency (‘Median’ row on
tables 1, 3 and 4), LV performs on par with LSTM, show-
casing the challenging nature of the task. Setting up such
naı̈ve baselines is vital to offer insights into the effectiveness
of models in future work.

Next, we further break down the performance of LSTM,
s2s, and MTs2s on the timestep level. The charts shown in
Figure 5 present the average MAPE and r2 of the three
models. As expected, the performance decreases as time
goes by in our future horizon. However, MTs2s consistently
outperforms the rest, whereas its performance on the third
(i.e., most challenging) future timestep is still better than
the performance of LSTM in the first (easier to predict)
timestep, demonstrating the importance of (a) the sequential
predictions and (b) multitasking. Finally, this performance
improvement is further accompanied by much lower training
times (see Figure 4) due to the ability of MTs2s to approxi-
mate the generative function of our time series much easier
than the single-task models.

Limitations
Aiming further to exploit the performance of our best per-
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LV RF FF LSTM s2s MTs2s
BAT 0.228 0.319 0.148 0.159 0.151 0.146
BSV 0.043 0.159 0.061 0.035 0.039 0.028
BTC 0.068 0.130 0.043 0.044 0.043 0.045
DSH 0.062 0.336 0.048 0.047 0.041 0.042
EOS 0.038 0.046 0.030 0.026 0.027 0.026
ETC 0.036 6.569 0.027 0.187 0.057 0.022
ETH 0.092 12.997 0.064 0.088 0.085 0.058
ETP 0.235 0.161 0.174 0.175 0.197 0.162
IOT 0.115 0.182 0.088 0.076 0.073 0.073
LEO 0.077 12.946 0.055 1.628 0.190 0.054
LTC 0.071 0.068 0.051 0.044 0.051 0.046
NEO 0.034 0.065 0.031 0.023 0.026 0.022
OMG 0.187 2.391 0.134 0.143 0.172 0.123
TRX 0.070 1.821 0.083 0.200 0.143 0.047
UOS 0.145 7.136 0.126 13.465 0.697 0.087
VSY 0.043 0.044 0.043 0.038 0.056 0.039
XLM 0.048 0.066 0.042 0.031 0.034 0.037
XMR 0.051 0.093 0.043 0.053 0.043 0.034
XRP 0.085 2.799 0.114 0.530 0.116 0.057
XTZ 0.275 0.785 0.175 0.196 0.177 0.175
ZEC 0.104 0.129 0.074 0.067 0.073 0.070
ZRX 0.072 2.837 0.054 0.047 0.050 0.047
Med. 0.072 0.251 0.058 0.072 0.065 0.047

TABLE 4: Average MSE per cryptocurrency across all
future timesteps for each model (LV, RF, FF, LSTM, s2s,
MTs2s). All results have been multiplied by 102 to ease
readability. The best, statistically significant results appear
in bold font.

Figure 4: Comparison of training time needed (average,
per cryptocurrency) for our deep learning models. Notice
that the training time for the multitask MTs2s model is the
overall time needed for training on all 22 cryptocurrencies.
The experimental runs were performed on a 2.4 GHz Intel
Core i5 CPU.

forming system and guide future work toward challenging
directions, we performed a final experiment. Here, we in-
crease the prediction horizon to one week (21 intervals) and
contrast the performance (MAPE) of MTs2s against that
of LV. The results are shown in Figure 6. Though MTs2s
achieve better results than LV in the first timesteps (e.g.,
2.6% vs. 5% in the first timestep), its accuracy degrades
with time, and from the third day onwards, LV achieves
better performance. Arguably, training with historical data
from only the past four days might limit the capabilities
of MTs2s to exploit long-range dependencies; however, this
performance degradation over time also points to the need
for incorporating online training in our future work.

Figure 5: The evaluation scores (MAPE and r2) of the three
temporal models per timestep averaged across all cryptocur-
rencies.

5. Conclusions and Future work

This work explored and introduced sequence-to-
sequence modeling of cryptocurrency fluctuations in time in
a multi-task setting. We worked with univariate time series
of multiple cryptocurrencies over two years and explored
many evaluation metrics and baseline models. Our proposed
model offers significant performance gains against common
practices in related work and competitive baselines from
the real world, highlighting the benefit of joint learning in a
sequence-to-sequence manner while also offering essential
improvements in training time.

In our future work, we plan to explore several other
features that vary over time, such as trade volume, and
incorporate external sources of information, such as news
articles and textual data from social media, using natural lan-
guage processing techniques and sentiment analysis. Finally,
it would be of great interest to see how methodologies as the
one developed in this paper can be used as price oracles for
decentralized exchanges such as Automated Market Makers,
where one of the main difficulties is the ability to query
data external to a blockchain (oracle problem). Specifically,
reliable forecasting models will release us from the need of
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Figure 6: Comparison of (average across all cryptocurren-
cies) performance between MTs2s and LV per timestep,
when working with a prediction horizon of seven days.

having constant access to oracles and, in the same time, will
tackle one of their main issues of them regarding the track
of the market price of assets.
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